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1. INTRODUCTION

Propulsion systems for conventional gun-based weapon systems are designed to
operate safely over a variety of environmental conditions. Extremes of temperature are
one of the more important conditions which the propulsion designer must consider when
contemplating a new charge design. Global as well as widely varying local climatic
conditions generally dictate that a ropulsion concept must perform safely at temperature
extremes of at least -450 C to +63 C.

Meeting these requirements with chemical based propulsion systems has entailed
limiting the performance of the system at ambient conditions (210 C) so that when the
system is fired at high temperatures safety constraints on chamber pressure are not
exceeded. Since ambient, or close to ambient, conditions may represent a high percentage
of the weapons exposure, it becomes obvious that weapon performance is rarely opti-
mized. In addition, performance at lower temperatures generally degrades further, since
the cold temperature pressures are usually lowest. T iles 1 and 2 detail velocity and
pressure data for typical tank and howitzer propelling charges. Note that in general, higher
pressure systems exhibit higher temperature coefficients.

Table 1. Typical Howitzer Charge Temperature Performance

155-MM 198 Howitzer Firing M203A I Charge. System Pressure Limit 405 MPa

Parameter Cold Ambient Hot

Chamber 311 363 394
pressure (MPa)
Velocity (m/s) 782 833 860
Temnerature coefficients
Pressure (MPaI°c) -0.72 0.74
Velocity (m/s/ 0C) -0.71 0.64

Percent -14 9
pressure change
from ambient

Percent velocity - 6 3
change from
ambient

Cold -51 0 C, Ambient 210 C, Hot 63? C

It is obvious that significant performance gains could be realized if the designer
could control the changes in propulsion performance with temperature, usually termed
velocity and pressure coefficients of temperature. Figure 1 demonstrates graphically the
the result of flattening this coefficient.

Reducing temperature coefficients in gun based weapons will be referred to
henceforth as temperature compensation techniques or simply temperature compensa-
tion. It is the intent of the authors to quickly review past research and then present results
from recent inquiries.



Table 2. Typical Tank Charge Temperatuire Performance

120-MM M256 Cannon Firing M829 Cartridae. System Pressure Limit 670 MPa

Parameter Ambient Ht

Chamber 416 526 653
pressure (MPa)
Velocity (mIs) 1535 1675 1768
Temperature Coefficient,
Pressure (MPaI0 C) -1.64 3.02
Velocity (rn/s/ 0 C) -2.09 2.21

Percent -21 24
pressure change
from ambient

Percent velocity - 8 6
change from
ambient

Cold -46 0C, Ambient 21 0 C, Hot 630 C

I 1Lmite

.. .- 40 - - - -. .

Optimum Ambient
Operating Level

rr I Safe Ambient
••e I " Operting Level

r iCurrent TypicalI
• I I Temperatu-re Coefficient

Cold Ambient Hot
Temperature

Figure 1. Real and Ideal Temperature Coefficients

Before addressing the details of past and present attempts to reduce temperature
coefficients .t is worthwhile to consider the idea of always firing the charge at the hot
temperature limit.

Maintaining the ammunition storage areas in tanks and self-propelled artillery at hot
temperatures has been discussed for several years. Using this method the charge could
always operate at peak performance levels. Should the ammunition heating mechanism
not work the charges could still safely be fired since they would perform at normal lower
pressure and performance levels when cooled.
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There are of course some readily foreseeable problems with this technique. First,
the propellant might change performance levels after bong periods of high temperature
soaking or cycling due to the release of volatiles. Second, without the.main power plant of
the vehicle operating, a possible scenario for dug-in or concealed operations, there is not
likely to be enough power to continue heating the propellant. Finally, many non-powered
systems simply may not have the ability for propellant conditioning.

For certain applications, however, the idea seems to have significant merit and is

worth further consideration.

2. THE GROUND RULES AND THEORY

The primary reason that temperature compensation techniques are difficult to
achieve and promote is that by their very nature they are pushing a system to its "upper
limitsm. By that it is meant that attempting to reduce the temperature coefficient of a
propulsion system usually entails operation at top pressure levels for ambient conditions
with temperature induced changes controlled or mitigated. Should these controls or
techniques fail, the weapon system would likely be subjected to unacceptable and unsafe
loads. Therefore the temperature compensation technique, whatever design it might take,
must be absolutely fail-safe. This limitation is stated at the outset not to discourage
examination of the feasibility of such concepts but as a common design constraint that is
always present if not explicitly stated in the following discussions.

The variables available to the charge/weapon designer to control temperature

related performance are controlled by basic physics starting with the equation of state:

P(V-mb)=nRT, (1)

where P = pressure, V = volume, n = moles of gas, R = universal gas constant, T =
temperature, m = propellant gas mass, and b = covolume. Rearranging to

nRT
P -Vm reveals the obvious dependency of pressure on available volume.

(V- mb)

A projectile being fired from a weapon is somewhat analogous to piston movement
in a cylinder in that the force driving the piston/projectile must be carefully controlled such
that the cylinder/gun tube is not overloaded. This implies that the rate of pressure
generation be balanced at some point (the tube pressure limit) by the generation of
additional volume as the projectile moves downbore. The pressurization due to the burning
propellant is dependent on the propellant gas mass generation rate as shown in Equation
2:

m = prS, (2)
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where in = gas mass generation rate, p= propellant density, r = propellant burning rate
and S = propellant -surface area available. The propellant burning rate (r) is largely a
function of chemical kinetics.

In summary, the controlling factors affecting ultimate pressure in a gun tube during
firing are the volume available during the combustion cycle, the rate at which the propellant
burns (largely controlled by its chemical make-up), and the amount of propellant surface
area available at any point in the combustion -process.

3. HISTORICAL AND RECENT WORK BY CONTROLLING MECHANISM

A literature study of temperature sensitivity related research was conducted (Copen-
hafer, McCarty, and Hughes 1980; Foster and Miller 1980; Graham and Martin 1975;
Hamner, Hightower and Rector 1978; Jones, Foster, and Miller 1981; Corley and Kobbe-
man 1981; Palm 1983; Booth and Stokes 1986; Cohen and Flanigan 1983, 1984; Lyles,
Flanigan and Askins 1971; Beardell and White 1982; Christian 1982; White et al. 1982;
Stiefel 1983). The reported research generally address two generic modes by which
temperature sensitivity is produced, or controlled.

3.1. Ceia

The first and the most extensively researched mode involves chemical make-up
and propellant chemistry interactions. These studies, which focus primarily on solid fuel
rocket motors, have had some success controlling temperature sensitivity through the use
of additives such as aluminum, lead, copper, iron oxide, and others. These additives
appear to lower temperature sensitivities at low pressures generally below 20 MPa.
Attempts to control temperature sensitivity at higher pressures through the use of additives
have generally met with little success. Since most gun systems operate in the 345 - 620
MPa range there has been no real success with this approach in guns and thus this option
is not further addressed in this paper.

Deterrents have been used to retard excessively rapid burning or tailor performance
of some propellant geometries. Their role in temperature coefficient reduction is unclear
and undergoing continued study (Gonzalez and Worthington 1989; Anderson and Puhalla
1989). Deterrents may prove to be required to make use of propellant geometries which
might otherwise be ballistically unacceptable, yet may have desirable temperature com-
pensation properties through control of surface availability during combustion, such as ball
propellant geometries.

3.2. SurfaArea

Control of surface area available during the combustion process has been studied
for many years as a solution to offset the natural tendency of any energetic ,iTaterial to
change performance as a function of temperature. These studies generally center on
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control of surface generation as dictated by the mechanical properties of the grain or
charge. The rationale for this approach follows:

* At high temperatures the propellant may become pliable and during
the pressurization process collapse inward to fill voids such as perfs.
This occlusion process would in effect reduce the, available surface
area for combustion, thus reducing the rate of pressurization and most
likely the peak pressure obtained.

* Under cold conditions the propellant may become brittle and break
apart more readily during the combustion process producing addi-
tional surface area for burning and thus raising the pressure.

0 For compacted charges the effect of cold temperatures is generally
to produce quicker deconsoidation, additional grain surface area for
burning, and a resultant increase in pressure. At hot temperatures
the inverse occurs which reduces the grains exposed and lowers the
pressure.

Note that these control mechanisms may be counter-productive-to each other. For
instance, formulation changes to make a propellant more pliable at hot temperature are
likely to make it less brittle at cold temperatures and vice versa. In addition care must be
taken when working in the cold regime to not let the propellant become excessively brittle
as this can lead to overly high increases in pressure shou;d the available additional surface
become too large.

Some specific examples of mechanical properties and surface control include
recent low vulnerability propellants (LOVA) and compacted ball charges. These are further
discussed below.

3.2.1. LOVA

During the development of High Energy LOVA Propellants reduced temperature
coefficients relative to ron-LOVA propellants were encountered, For instance for some
LOVA formulations a hot temperature coefficient of 1.73 MPa per degree C was noted
(Rocchio, personal communication 1989). Note that high energy non-LOVA propellants
such as JA2may have hot temperature coefficients as high as 3.11 MPa per degree C. It
is believed that this reduced temperature coefficient is a result of surface area availablilty
via one of the mechanisms noted above. LOVA temperature sensitivity is under continuing
study.

3.2.2. Compacted Ball Propellant

Compacted ball propellant charges used in several medium caliber charges (20 and
30 mm) display favorable temperature compensation performance. Figure 2 demonstrates
these results.
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Figure 2. Compacted Rall Propellant Temperature Performance

The mechanism involved in temperature compensation for compacted ball propel-
lants is believed to be quite-complex. This is due to the fact that the propellant balls are
generally first coated with a deterrent coating of varying thickness depending upon
application. Then they are rolled to change their geometry from that of a ball to that of an
oblate sphere, which may induce fissures in the propellant surface. Finally they are
compressed at high pressures to form a solid compacted block of propellant. The
contributions of each process in reducing the temperature coefficient by surface control is
not entirely clear and is undergoing extensive scrutiny. It does appear however that the
compaction of the balls plays a key role in reducing the low temperature coefficient. For
instance the compacted charge appears to deconsolidate at a much higher, but controlled,
rate cold than ambient or hot (Gonzalez and Worthington 1989; Anderson and Puhalla
1989).

3.3. Volum .. ontml

Recent temperature compensation research has centered around the third available
mechanism to reduce temperature sensitivity, volume control, defined as the ability to
control the initial free volume in a weapon chamber as a function of the propelling charge
temperature. As detailed earlier the available volume during the combustion process
directly effects the achieved peak pressure. Two such studies are detailed below.

3.3.1. Control Tube Device

A control tube device has the ability to adjust the position of the projectile prior to
igniting the main charge. This allows it to increase the effective chamber volume for a hot
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CONDITION FOR MAIN CHARGE IGNITION AT 21*C:

CONDITION FOR MAIN CHARGE IGNITION AT HOT LIMIT:

Figure 3. Control Tube Device Concept

propellant by moving the projectile forward just prior to igniting the charge itself. Figure 3
displays this concept in its generic form.

Recent firings of such a device demonstrated that this concept is feasible. Figure
4 shows some of these results.

Control tube concepts can be relatively complex in design. In addition, the fail-safe
features of such devices remain to be proven.

P

e
s

u 620.

r of 14.6 %, ChamberZJJ Pressure Decrease/
e of 58 MPa

570

M
Pa 520.-

-40 -30 -20 -10 0 10 30 4 50
Temperature 0C

Figure 4. Control Tube Device Firing Data - 120-mm Cannon
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3.3.2. Variable Volume Gun Tube

A concept currently under study by the author involves modifying the gun tube itself
so that, in its ideal form, it is capable of adjusting the chamber volume of the weapon to
neutralize the effects of temperature sensitivity.

This, concept has several advantages over previously discussed techniques. First,
it is relatively charge independent, meaning that the same mechanism would be able to
correct for various charges, regardless of their peak performance or relative temperature
sensitivities. This would solve many problems associated not only with varying perform-
ances of different type charges but with changes within lots of the same type charges.

Secondly, it would be capable of adjusting volume both up and down and could
achieve true flat temperature sensitivity performance across any desirable range of
temperatures. Finally the concept could be applied across a variety of weapons of quite
different sizes and specifications.

How might such a system work? It might vary in complexity from a simple variable
intrusion breech set by the soldier from sensor information in the charge stowage area,
e.g., approximate charge temperature, to a smart chamber which is capable of sensing
pressure rise rates and instantaneously adjusting chamber volume. In between these
possibilities might be systems which employ barcode-like temperature sensors on charge
components which are read just before or during charge insertion and either prompt the
user to reset the chamber volume or communicate with an automated system to do it for
him. Figure 5 displays two potential design concepts.

To explore the feasibility of such a concept a simple experiment was performed.
The basic goal of this experiment was to determine what change in volume might be
required to implement such a system.

Adjustable Breech Intrusion

Expandable Chamber Walls

Figure 5. Variable Volume Gun Tube Concepts
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Since a variable chamber volume system was not yet available a simple inverse
compensation experiment was designed. In this experiment a charge was designed which
was somewhat less than full chamber bore In size. Several of these charges were fired hot
(63 0C) while chamber pressures and- velocities were recorded. Then the same charge
design was fired at ambient temperatures witty full bore length spacers (volume compen-

-sators) inserted in the chamber. The- procedure was repeated with increasingly larger
spacers In an attempt to achieve the pressures obtained In the hot firings. It was felt that
to a reasonable approximation this technique could be related to one for a expandable
chamber system.

Several v!ews of the test charges used are shown in Figure 6. Pressure increase
versus volume decrease results as compared to the baseline hot charge case are shown
in Figure 7.

Extrapolating the results of Figure 7 it can be seen that fnr this system a decrease
of 18 percent in volume is required to reproduce the temperature ;duced pressure change
which occurs during the hot firing. While this might on first look appear to be a-considerable

Figure 6. Variable Volume Experimental Charge

9



480 Temperature Coefficient
for no volume reduction 390-320 MPa

460 63 - 21 C =1.67 MPa/°C

440 With 18% volume change = 0

. 420.,a Hot FiringWc 400 (630 C)

cc 380
360 Ambient Firing

340

320,
0 5 10 15 ' 20

PERCENT VOLUME REDUCTION

Figure 7. Variable Volume Experimental Data

volume change requirement, it should be noted that it could be obtained by a full bore axial
length change of only 15 cm or a full-chamber radial change of-just 1.34*cm.

Future work in this area will concentrate on engineering prototype volume compen-
sation hardware, most- probably a variable intrusion breech. While the efforts in volume
compensation for temperature sensitivity reduction are still in their infancy, it is a promising
technique for increasing the performance of current conventional based propulsion sys-
tems.

4. SUMMARY

Chemical modification of propellant to reduce temperature sensitivity has to date
met with success with only low pressure propulsion systems such as rocket motors.
Temperature compensation through control of propellant mechanical properties and
therefore surface availability has met with limited success in small to medium caliber
systems to date. There seems to be no physical reason why these mechanisms cannot
be reproducibly controlled and scaled up. However it is still unclear if these mechanisms
can be made -to work well at both ends of the temperature spectrum simultaneously.
Volume control techniques are still in their infancy but hold the promise of a charge
independent, broad temperature range solution.
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Picatinny Arsenal, NJ 07806-5000 Picatinny Arsenal, NJ 07806-5000

2 Commander 1 Commander
Production Base Modernization Agency U.S. Army Armament Research,
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ATTN: SLCHD-TA-L U.S. Army Belvoir Research and
2800 Powder Mill Rd. Development Center
Adelphi, MD 20783-1145 ATTN: STRBE-WC

Fort Belvoir, VA 22060-5006
Commandant
U.S. Army Aviation School 1 Director
ATTN: Aviation Agency U.S. Army TRAC-Ft. Lee
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U.S. Naval Surface Warfare Center 1 AL/TSTL (Technical Library)
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P.O. Box 126 Radford, VA 24141-0299
Hunt Valley, MD 21030-0i26

3 Director
2 Aerojet Solid Propulsion Company Lawrence Livermore National

ATiN: P. Micheli Laboratory
L. Torreyson ATrN: L-355,
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